
J. WITZ 711 

Indeed, the slope of this variation and the isopycnic 
point are very different for proteins, lipids, nucleic 
acids, etc., thus allowing the determination of the 
chemical composition, including solvent, of each 
region. 

X-ray small-angle scattering is a good tool for the 
determination of the overall shape and size of globular 
particles whatever their internal structure, because the 
small molecules used to change the contrast are 
unlikely to penetrate the particle and do not give rise to 
additional internal-density fluctuations. Neutron scat- 
tering in IH20/2H20 buffers covering a large range of 
contrasts, on the other hand, provides a unique 
possibility to get an insight into the internal organi- 
zation of complex biological particles (see also Luzzati, 
Tardieu, Sardet, Le Maire, Osborne & Chabre, 1983). 

I thank especially Dr B. Jacrot, European Molecular 
Biology Laboratory Outstation, Grenoble, and Dr A. 
Tardieu, Centre de G6n&ique Mol6culaire, Gif-sur- 
Yvette, for stimulating discussions. 
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Abstract 

The application of dynamical diffraction theory to the 
'phase problem' for centric crystals shows that the 
intensities diffracted in simultaneous three-beam inter- 
actions display characteristic maxima and minima. The 
sequence in Which these appear on chart recordings is a 
sensitive function of the phase of the triplet involved in 
the interaction. The sequence is the same for all triplet 
phases of the same sign; it is reversed for those of the 
opposite sign. In earlier work a number of triplet phases 
in perfect crystals were determined. In the present 
work, several hundred triplet phases in mosaic crystals 
have been determined. Details of one of these investi- 
gations are reported in the following paper [Gong & 
Post (1983). Acta Cryst. A39, 719-724]. 

* This work was supported by the National Science Foundation 
and by the Joint Services Electronics Program of the Defense 
Department. 
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Introduction 

In previous publications (Post, 1977, 1979), it was 
shown that the spatial distribution of the intensity 
diffracted by a centrosymmetric crystal in n-beam 
simultaneous diffraction (n > 2) is a sensitive function 
of the invariant phase of the structure-factor triplet 
involved in the interaction. This indicated that the signs 
of such phases could be retrieved directly from the 
diffracted intensities. Some success was finally achieved 
and several examples of experimental phase determina- 
tion were included in the works cited above. These were 
based on photographic recordings of intensities trans- 
mitted through perfect and slightly imperfect thin 
crystals of germanium and aluminum oxide. 

A major objective of the present work involves the 
demonstration that similar phase effects may be 
displayed in n-beam diffraction by mosaic crystals, 
comparable in quality, or lack of it, to crystals 
commonly used in crystal structure investigations. This 

© 1983 International Union of Crystallography 



712 DETERMINATION OF THE PHASES OF X-RAY REFLECTIONS 

has been done. The signs of several hundred triplet 
phases in centrosymmetric mosaic crystals of zinc 
tungstate,* lead molybdate and sulfamic acid have been 
determined from their n-beam patterns. Detailed 
descriptions of one of these investigations are given in 
the following paper (Gong & Post, 1983).t 

Examples of intensities recorded in n-beam diffrac- 
tion involving three and four beams are given in Figs. 1 
and 2. Analysis of the patterns, based on considera- 
tions which were discussed briefly in the 1977 and 1979 
papers, and which are dealt with more fully in this 
manuscript, shows that the triplet phases of the 
interactions in Fig. 1 (a) and (b) are positive and those 
in Figs. 2(a) and (b) are negative. The description of the 
procedures used to arrive at these conclusions pre- 
supposes some familiarity with the dynamical diffrac- 
tion theory of Ewald (1917). A discussion of selected 
elements of the theory which are considered to be 

* The author is indebted to Dr William Roth, of the National 
Bureau of Standards, for providing the zinc tungstate and various 
other crystals for this investigation. 

I" Preliminary results were presented at the Spring, 1982 meeting 
of the American Crystallographic Association at the National 
Bureau of Standards, by P. P. Gong, J. A. Nicolosi & B. Post. 

relevant to the 'phase problem' is therefore included 
in the sections immediately following. The phase- 
determination procedure and related matters are then 
discussed. 

Chart recordings of simultaneous n-beam diffrac- 
tion patterns display characteristic maxima and minima 
about n-beam settings. The experimental determina- 
tion of triplet phases is based on the analysis of the 
sequences in which those intensity asymmetries appear 
on the charts. We have observed large numbers of 
intensity asymmetries, similar to those shown in Figs. 1 
and 2, in n-beam patterns of perfect and mosai~ 
crystals. We have been unable to account for either the 
characteristic shapes of the interactions, or their 
relationships to triplet phases, on the basis of conven- 
tional kinematical considerations. As we will show 
below, both those aspects of n-beam interactions are 
accounted for satisfactorily when the problem is treated 
by the methods of dynamical diffraction. 

It is well known that diffraction by mosaic crystals 
involves incoherent interactions among optically in- 
dependent perfect domains as well as coherent inter- 
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Fig. 1. Small portion of a simultaneous diffraction pattern of zinc 
tungstate. Cu Kit 1 radiation. 
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Azimuthal angle, ~0 (o) 

Fig. 2. Further small portion of a simultaneous diffraction pattern 
of zinc tungstate. Cu Ka~ radiation. 
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actions within those domains. The former include 
'secondary extinction' effects. They often constitute 
major fractions of the total recorded intensity in 
two-beam diffraction. They play a less important role in 
n-beam diffraction (n > 2). 

In order to generate incoherent n beam diffraction it 
is necessary that 'n' independent domains be aligned 
critically relative to one another. In addition, the 
divergence of the incident beam is generally reduced, in 
properly conducted n-beam experiments, to values 
much smaller than those normally used in two-beam 
diffraction, in order to resolve the intensity asym- 
metries under discussion. The combination of the above 
greatly reduces the likelihood that incoherent n-beam 
interactions will occur frequently enough to affect the 
phase indications significantly. 

Variations of the sizes of coherent domains may 
generate more serious difficulties. It will be shown 
below that the intensity asymmetries are due largely to 
selective absorption effects within coherent domains. 
They are relatively unimportant in small domains, i.e. 
in those with small values of #t; these scatter X-rays 
kinematically and contribute mainly to the general 
background. 

The phase-determining asymmetries appear to be 
due mainly to the relatively small numbers of 'large' 
domains in the crystal. In our work to date only from 5 
to 10% of the possible interactions yield useful phase 
indications. 

The experimental data are produced by the inter- 
action of an incident beam, whose divergence, even after 

reduction, is large in dynamical terms, with a crystal 
whose mosaic spread and anisotropy are generally 
unknown. It is clearly very difficult to achieve 
quantitative evaluations of the data. Fortunately, the 
experimental determination of triplet phases involves 
essentially qualitative procedures which are relatively 
insensitive to the aberations mentioned above. 

There appears to be little to be gained from separate 
discussions of dynamical effects in perfect and mosaic 
crystals. Our treatment is therefore more general. 
Modifications of the analysis should be made to suit 
individual cases. 

I. Theory 

available (Ewald, 1969; James, 1963; Batterman & 
Cole, 1964). 

Laue has shown that the calculation of n-beam 
dynamical diffraction effects involves the solution of 
Maxwell's equations for a medium with a periodic 
complex dielectric constant, under conditions which 
satisfy Bragg's Law. A sum of plane waves is taken as 
the assumed solution for the wavefields in the crystal: 

D =  y Dnex p - (2zaKn. r ). (1) 
H 

K H is a wave vector in the crystal, with magnitude 
1/2(or), directed to the reciprocal-lattice point (r.I.p.) 
indicated by its subscript; D n is the corresponding 
electric displacement vector; r is a vector in the surface 
of the crystal. K is the vacuum wave vector; its 
magnitude is 1/2(vat). 

Using Bragg's law, (K n = K 0 + H), we have: 

D = e x p -  (2zdK0. r) Y Dn e x p - ( 2 z a H . r  ). (2) 
H 

The solutions of Maxwell's equations lead to a set of 
linear homogeneous equations for the amplitudes: 

F 
DH -- (3) , ~  F(n-O DLIHI. 

2ell 

H and L are r.I.p.'s; D q m  is the vector component of 
Dr which is perpendicular to K H. F= e222/41ree, vmc2V; 
V is the volume of the unit cell; e v is the permitfivity of 
vacuum; other terms have their usual meanings. /" = 
1.175 × 10 -7 for Cu Kct and a cell volume of 180 A 3. 
e x is a negative quantity which serves as a measure of 
the deviation from geometrical diffraction conditions. A 
detailed derivation of (3) is given in Appendix A of 
Batterman & Cole (1964). 

Equation (3) is the fundamental equation of 
dynamical diffraction. It was first derived by Ewald in 
1917. The summation on the right is nominally taken 
over all r.l.p.'s but, because most terms have negligible 
magnitudes, it is limited in practice to a few large 
terms, i.e. to terms whose tn's are very small. The 
corresponding r.l.p.'s are then considered to be in their 
'diffracting positions'. The number of terms in the 
summation is generally the same as in the equivalent 
kinematical calculation. 

(A ) The fundamental equation 

The kinematical theory of diffraction provides the 
theoretical basis for crystal structure investigations 
which utilize conventional two-beam diffraction. Its 
many approximations and omissions, however, render 
it unsuited for the detailed analysis of n-beam simul- 
taneous diffraction needed for experimental phase 
determination. For the latter we make use of the 
self-consistent theory of Ewald (1917), as modified by 
Laue (1931). Useful discussions of the theory are 

(B) The number of equations 

Equation (3) yields n vector equations for n-beam 
diffraction. To deal with polarization, each D n is 
usually decomposed into two mutually perpendicular 
components to form 2n scalar equations, i.e. six 
equations for three-beam cases. The permitted values of 
the e0's are the solutions of the secular determinant of 
(3). In most cases, especially at small Bragg angles, 
these solutions occur in the form of pairs of e0's with 
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similar values. The small differences are due to 
polarization effects. To reduce mathematical difficul- 
ties, without significant loss of accuracy, those dif- 
ferences will be ignored, leaving only n scalar equa- 
tions. 

(6") The dispersion surface (DS) 

The DS is the locus in reciprocal space of the 
solutions of (3); the On'S, scaled by multiplication by k, 
are plotted as functions of the azimuthal angle of 
crystal rotation. In Fig. 3, k and K 0 are drawn from the 
origin of the reciprocal lattice towards C, the center of 
the sphere of reflection, k terminates at C; K 0 ends just 
short of it. Magnitudes are greatly distorted in the 
figure. R, the radius of the sphere, = Ikl -- 6.49 x 107 
cm -x. The difference between the lengths of K 0 and k is 
of the order of a few hundred cm -1, or about R x 10 -5. 
Points 1, 2, 3 are marked along K 0 to represent its 
terminus for each of three solutions of (3). 

The large arc through C represents a small portion of 
a section through the 'Laue sphere', R = Ikl; the 
second arc does the same for the 'Lorentz sphere', R ' = 
(I K01 ), the reciprocal of the average wavelength within 
the crystal. 

The positions of e 0 and of all r.l.p.'s are fixed when 
the orientation of K 0 is fixed, and they change when the 
latter changes. Once s0 is determined, using (3), all the 
sn's~ can be calculated from geometry (Hildebrandt, 
1967). Changes in the orientation of K 0, due, say, to 
the divergence of the incident beam, cause points 1,2 
and 3 to sweep out small areas, the 'sheets' of the DS. 

The DS is the sum of all the sheets. It displays 
graphically most of the significant features of the 
diffraction process. Relevant boundary conditions are 
taken into account by drawing inward normals, 
originating at points on the surface on which the 
incident beam impinges. The intersections of each 
inward normal with the sheets are the 'tiepoints' for the 
corresponding crystal setting (see Figs. 4 and 5). 

Fig. 3. Wave vectors in reciprocal space. K 0 and k originate at O 
and are parallel to one another. 

Additional sets of tiepoints are generated as the crystal 
is rotated. The surface boundary conditions as well as 
Maxwell's equations are satisfied at the tiepoints, each 
of which serves as the source of wave vectors directed 
to the r.l.p.'s involved in the interaction. 

(1) The one-beam DS (no diffracted beams). For 
this case the solution of (3) is trivial. Only D O need be 
considered. We have 

8(ol)n0 = --(F/2)FoD o. (4) 

The superscript refers to n, the number of beams. The 
one-beam DS is a spherical shell (the Lorentz shell). Its 
radius, IK01, = k(1 + %). k% equals the difference 
between the radii of the Lorentz shell and the slightly 
larger Laue shell. The ratio of the radii, I Knl/k ,  equals 
the average refractive index of the crystal for the 
radiation used. It is of the order of 1-10 -5 for most 
materials if Cu Ka is used. 

(2) The two-beam DS. The coefficients of the D's 
for the exact two-beam settings may be arranged in a 
2 x 2 determinant (for the simplified DS). On expan- 
sion, this gives (Post, 1979) 

IF ,  I2 = + I (F  0 + 2s0/r)l 2. (5) 

Both sides of (5) consist of squared terms. Ewald 
(1968) has pointed out that this makes it impossible to 
determine phases directly from two-beam diffraction 
data. 

It is useful to rewrite (5) to show F n as an explicit 
function of e 0, i.e. 

F n = +  F o+kt(o 2) . (6) 

In the plane of the paper the two-beam DS consists 
of two lines symmetrically disposed about the Lorentz 
'line'. The distances from the sheets to the latter are 
equal and proportional to F n. At the Lorentz line F n = 
0, ~0 is the azimuthal angle, the angle of rotation about 
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Fig. 4. The two-beam dispersion surface. 
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the diffraction vector; it equals zero at the exact 
three-beam settings (Fig. 4). 

(3) The three-beam DS. Unlike the two-beam DS, 
which is invariant to changes in ~0 for constant Bragg 0, 
the conditions for three-beam diffraction are satisfied 
only at discrete values of ~0. At exact three-beam 
settings the DS, in the plane of the paper, consists of 
three points, the solutions of (3). In Fig. 5 these 
coincide with the intersections of the DS sheets and the 

vertical line at ~0 -- 0. The Lorentz point, Lo, is the 
origin of the coordinate system. 

For ¢ = 0, expansion of the determinant of the 
coefficients of the D's yields a cubic equation of the 
form: 

X 3 + AX + B = 0, (7) 

X =  + ; A = --  [FI[2; 
i 

B = 2FuFLF¢L_H). 
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Fig. 5. The three-beam dispersion surface, showing transitions 
from two to three beams, i.e. from an interaction involving 0 and 
H to one involving 0, H and L. 

The roots (Rt) of (7) are calculated by standard 
methods: 

Rt = T-2(-A/3) 1/2 [cos (q~ +Yt)], i =  1, 2, 3; 

yl 0 ,120,240o.  q~= 1 t B2 27) '/2 ~-~ , - -  COS--1 . 
3 4 A 3) 

(8) 

Because of the absence from (7) of any term 
quadratic in X, the sum of the roots equals zero. In 
general, there will be three real unequal roots. The signs 
of the roots, but not their magnitudes, are functions of 
the sign of the invariant triplet phase, i.e. the sign of B. 
The minus symbol in (8) signifies that the sign of the 
largest root is the negative of that of B. The signs of the 
smaller roots are the same as that orB. 

The magnitudes of two of the roots are larger than 
those of any of the F's involved in the triplet. The 
third root is smaller than any of the F's. Because 
the sum of the roots must equal zero, only one of 
the large roots lies between the Lorentz and Laue 
lines. One three-beam root is closer to the Laue line 
than either two-beam sheet, for positive and negative 
phases. To approximate the two- to three-beam 
transition regions of the DS the two-beam sheets should 
be joined smoothly to the points which represent the 
roots at ~0 = 0. The transition regions in Figs. 5(a) and 
(b) were sketched in that way. Two sets of F's, with 
identical absolute values, but differing in their triplet 
phases, were used to calculate the two- and three-beam 
roots. Note that Fig. 5(b)is related to 5(a) by a 180 ° 
rotation about the Lorentz line. That is expected. A 
change in the sign of the triplet phase implies a 
corresponding change in the signs of the three roots. 

(D) Absorption 

Ewald (1968) has shown that absorption coefficients 
approach zero near the Laue line and increase with 
increasing separation from that line. They reach ~t 0 at 
the Lorentz line and continue to increase beyond that. 
/~0 is constant for a given crystal and wavelength. It is 
equal to the average of all the coefficients at any crystal 
setting. 
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In two-beam diffraction the absorption coefficients 
of the sheets differ, but each maintains a constant value 
as long as only two beams are involved. In regions of 
transition from two to three beams, the coefficients of 
sheets change with changing distance from the Laue 
line. 

(E) n-beam peak profiles 

It is evident that most of the diffracted intensity 
which emerges from a crystal is due to diffracted waves 
which originate at tiepoints on the sheets nearest the 
Laue line. That effect is enhanced in regions near three- 
beam settings. For positive and negative phases only 
one of the two largest roots lies between the Lorentz 
and Laue lines. Two-beam sheets approach three-beam 
lines from both sides. One sheet must curve upward in 
order to be joined to the three-beam root, as is shown in 
Figs. 5(a) and (b). This results in a further decrease in 
the already low absorption coefficients together with an 
increase in the observed intensity. 

It is useful to examine Fig. 5 (a) in terms of changing 
~o; i.e. by moving across the figure from left to right. At 
the extreme left, normal two-beam diffraction prevails. 
Closer to the three-beam settings, sheet 1 begins to 
curve upward, as noted above. The intensity rises 
above its normal two-beam value, reaching a maximum 
near the three-beam line. Crossing that line is equiva- 
lent to the passage of the secondary r.I.p., L, through 
the surface of the Ewald sphere. To the right of the 
three-beam line, the excitations of the tiepoints on sheet 
1 drop rapidly to zero. Away from the surface of the 
sphere, r.I.p. L soon reverts to its original status as a 
one-beam case. 

Additional surface normals are generated to the right 
of the three-beam boundary; they pass through three 
sheets in that region but only the lower two need be 
taken into account. To the right of the three-beam line, 
sheet 2 becomes the source of tiepoints with the lowest 
absorption coefficients. Those are larger than the sheet 
1 coefficients. The intensity decreases to values lower 
than the normal two-beam values. Further to the right, 
sheet 2 moves upward across the Lorentz line to 
become sheet 1' on the right; the intensity increases 
correspondingly until it reaches its two-beam value. 

The Fig. 5(a) triplet phase is labelled 'negative'. The 
DS for 'positive' phase is shown in Fig. 5(b). There, 
comparable movement from left to right produces, first, 
an intensity decrease, then a sharp rise to a maximum 
value, and, finally, a gradual return to the two-beam 
value. 

The peak profiles shown below Figs. 5(a) and (b) 
represent estimates of the intensity distributions expec- 
ted for the two cases. The intensities and the left-right 
symmetries differ. The former is of minor importance 
for phase determination. The latter provides the means 
of distinguishing positive from negative triplet phases. 

II. Experimental 

(A) n-beam intensities 

Clearly, the sequences of maxima and minima on 
strip-chart recordings of n-beam interactions can be 
reversed if the direction of crystal rotation is reversed. 
Similarly, the corresponding sequence displayed when a 
r.I.p, enters the Ewald sphere will be reversed when that 
r.I.p, leaves the sphere, as shown in Fig. 6. The effect of 
such a reversal resembles the effect produced by 
changing the sign of a triplet phase. This point has also 
been noted by Chang (1981). 

Difficulties caused by that similarity can be readily 
eliminated. The distinction between r.l.p.'s entering the 
Ewald sphere and those leaving is made routinely in 
calculating the azimuthal angles at which n-beam 
interactions occur (Cole, Chambers & Dunn, 1962). 
The invariant phases of three-beam interactions, whose 
patterns show asymmetries of the types discussed, can 
then be placed in one of the two categories available to 
centrosymmetric crystals. Positive and negative phases 
will then be grouped separately. 

(B) Absolute phases 

In discussing the procedure for joining two-beam 
sheets to three-beam roots, we neglected to point out 
that there are two distinct ways in which that could be 
done, for positive or negative phases. Either type of 
intensity asymmetry could equally well have been 
designated as 'positive', or 'negative'. At present we 
have no valid grounds for selecting one in preference to 
the other. The phase assignments, as shown in Fig. 5, 
for example, are arbitrary. Their arbitrary character 
can be eliminated by determining one invariant phase 
independently, by statistical or other methods. It then 
becomes possible to assign correct absolute triplet 
phases to all the three-beam interactions in question. 

(C) The Renninger method 

A slightly modified version of the Renninger experi- 
mental arrangement (Renninger, 1937) has been used 

B A  intensiy  
Fig. 6. Intensity profile sequences for reciprocal-lattice points 

entering and leaving the Ewald sphere. 
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in our laboratory for several years to collect n-beam 
diffraction data. The Renninger method is well suited 
for systematic and rapid recording of n-beam diffrac- 
tion patterns, and avoids many difficulties inherent in 
transmission methods, particularly those related to 
absorption. 

There are significant differences between the Ren- 
ninger and the Bragg methods. The latter generally 
involves a scan over an angular range in the plane of 
incidence. The reflection maximum under study is 
usually near the center of the Bragg range. In the 
Renninger arrangement, the crystal is first fixed at the 
exact Bragg angle. It is then rotated about the 
diffraction vector without disturbing the 0 setting. 

Rotation of the crystal about the diffraction vector 
results in the passage of large numbers of secondary 
reflections successively through widely scattered points 
on the surface of the Ewald sphere. To achieve 
adequate resolution under those conditions, it is 
desirable to reduce the divergence of the incident beam 
by approximately equal amounts in all directions in the 
beam cross section. This incident beam divergence 
causes the saturation of the DS to be spread over a 
large angular range. Kato (1958) showed that ' . . . the 
direction of energy flow corresponding to a tiepoint on 
a particular sheet of the DS is that of the normal to the 
surface at that point'. There is general agreement on the 
above (Ewald, 1968; Batterman & Cole, 1964). The 
properties associated with a tiepoint are independent of 
the methods used to select or excite the tiepoint. Thus, 
the conclusions drawn from Fig. 5 regarding three- 
beam interactions studied by reflection methods should 
not be affected significantly by the fact that the figure 
was originally prepared to illustrate a transmission 
experiment, provided that a substantial region of the 
DS was saturated by the incident beam. 

In Renninger diffraction, the angle between K 0 and 
the primary diffracting planes does not vary. In the 
small angular interval in which three-beam diffraction 
takes place, that two-beam angle becomes irrelevant; 

Lo 

H 

L 

Fig. 7. Two-beam (02) and three-beam (03) diffraction angles. 

D 

B 0 A 

Fig. 8. One-beam to three-beam transition. 

(D) 'Bragg' angles 

In two-beam diffraction, the angle between K o and 
the perpendicular bisector of the diffraction vector, H, 
is the two-beam Bragg angle. A similar relation holds in 
three-beam diffraction. 

When r.l.p.'s 0, H and L are simultaneously in their 
diffracting positions, a line from the center of the Ewald 
sphere, normal to the plane of the OHL triangle, passes 
through the midpoint of the latter and is inclined to the 
propagation vectors K0, K n and K L by equal amounts. 
We label the two angles 02 and 03 (Fig. 7). 

03 is encountered explicitly in one- to three-beam 
transitions. The OHL plane of Fig. 8 is rotated, as 
shown, into the Ewald sphere. The circular intersection 
increases in size with increasing tilt angle. When D 
touches the surface of the Ewald sphere, the conditions 
for three-beam diffraction are satisfied. The tilt angle 
equals 03. It is larger than the two-beam Bragg angles 
that can be formed with any of the three vectors, H, L, 
or L - -  H. 
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Fig. 9. Effects of a two- to three-beam transition on field 
amplitudes. 
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the relevant angle is then 03 . The change in diffraction 
angles, from 02 to 03 , leads to sudden changes in beam 
polarizations. The effects of the latter on the amplitudes 
of the D0's are illustrated in Fig. 9; all six sheets of the 
three-beam DS were taken into account to calculate the 
figure. The amplitudes, which are stable in two-beam 
regions, change by large amounts near the exact 
three-beam setting, owing to the shift in diffraction 
angle. In most cases, these amplitude and polariza- 
tion-angle changes are restricted to regions within 
about 30 to 40" of the three-beam setting. Note that the 
amplitudes of two of the modes decrease to negligible 
values outside those regions, leaving four modes for the 
two-beam regions, as expected. 

Fig. 9 and similar calculations that we have made 
for many three-beam cases show that it is very difficult 
to make meaningful measurements of three-beam 
intensities near the exact three-beam line, unless the 
divergence of the incident beam can be restricted to 
about 1 or 2", which is difficult to do at present. They 
also indicate that measurements of regions outside the 
30" boundary could be physically significant. 

The changes in diffraction angle, from 02 to 03 , lead 
to reductions in atomic scattering factors and increased 
temperature factors. These should be taken into 
account in calculating three-beam structure factors. 

(E)  Aufhel lung etc. 

The behavior of the DS in the region of a three- 
beam interaction shows that Aufhel lung and 
Umweganregung are simply different aspects of the 
same phenomenon, and that the two should not be 
treated separately, as though they represent two 
distinct types of interactions 

( F) General comments  

We believe that the primary objective of an experi- 
mental phase-determining procedure should involve the 

provision of a nucleus of phases, determined with a 
minimum of ambiguity, to serve as a starting point for 
the application of direct methods. That may make 
possible the solution of the probably large numbers of 
crystal structures which have not been solved using 
direct methods. In any case, the availability of a 
starting group of unambiguously determined phases 
would certainly reduce computing times significantly. 

The major problem, of course, involves the 
determination of the phases of non-centrosymmetric 
crystals. That, too, is beginning to look promising. 
There is no reason, in principle, why the methods 
discussed above should not be applicable to acentric 
crystals. It would be necessary to replace the 
qualitative equations which enable us to determine the 
phases of centric crystals by quantitative measure- 
ments of n-beam intensities in stable regions of the DS. 

High-intensity sources, longest X-ray wavelengths 
and new instrumentation, designed specifically for 
n-beam studies, will undoubtedly be vital factors in the 
solution of the problems listed above and others that 
will arise. 
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